
Using an alternative malloc implementation under Solaris to make
better use of memory in memory intensive applications

William Schaub

Steuben Technologies

ABSTRACT

If you heavily use Solaris as a workstation and use various popular apps such as
Firefox , OpenOffice , Acrobat reader and even gaim. Then you will notice that they
heavily fragment and in many cases waste memory on Solaris eventually causing your
system to start heavily swapping if you use them for long periods of time.

This document aims to help the reader compile and preload dlmalloc into their
applications in order to avoid heavy paging and swapping when using these applications
over a long term basis.

1. Introduction

I am a long time Solaris user. Not just on
the server but on the desktop I run my workstation
hard and almost never log out of CDE or quit my
browser or office suite as I usually have many
documents and web pages open in various
workspaces. Each workspace is dedicated to a
particular task I’m currently working on and they
all might be in various stages of completion at any
given time.

I rely on this to keep state on what I’m cur-
rently working on, the problem is under Solaris it
seems that certain apps that I use heavily lik e
OpenOffice and FireFox do not deal at all well
with being open for long periods of time and
seem to constantly grow until everything in the
system starts to run out of resources and the appli-
cation eventually even crashes.

Since the primary development platform for
most of these tools is Linux I decided to try
replacing the system malloc with Doug Lea’s
malloc since the glibc version of malloc is based
on his malloc implementation and has been
shown to perform well in conserving memory,
and even has the ability to return memory to the
operating system under certain conditions. This

has worked out very well for me and I intend to
share with you the fairly simple process of doing
this yourself.

2. Getting dlmalloc up and running on your
system

The first thing to do is read Doug Lea’s web
page on his memory allocator you can find it at
http://g.oswego.edu/dl/html/malloc.html

This should tell you right away what this
memory allocator is about and some very generic
information on how to build it. There is also a lot
of good information inside the source file itself.

2.1. fetching dlmalloc

Fetch the most recent dlmalloc from the
URL below. The malloc.h file is only needed if
you want to compile and link in Doug lea’s mal-
loc directly into your software and want to be able
to use some of the extra built in functions (like
mspace_malloc, mspace_...)

$ wget ftp://g.oswego.edu/pub/misc/malloc.c
$ wget ftp://g.oswego.edu/pub/misc/malloc.h

-2-

2.2. Compiling dlmalloc

By default dlmalloc will not compile as a thread safe library. Needless to say this will not be very
useful at all for modern applications. Thankfully recent versions of the library have locks using POSIX
threads which you can enable by definingUSE_LOCKS and linking thepthread library into the shared
object.

The following examples use the Sun Workshop compilers (or whatever sun calls them this week) aka
SUNWSpro. but you can use gcc if you like. I recommend you take a quick look at docs.sun.com and pull
up theLinker and Libraries Guide for your version of Solaris.

2.2.1. Compiling the 32 bit library

$ mkdir 32
$ cc -xO4 -DMSPACES -DUSE_LOCKS -o dlmalloc.so -G -K pic malloc.c -lpthread
$ mv dlmalloc.so 32

2.2.2. Compiling the 64 bit Library

$ mkdir 64
$ cc -xO4 -xarch=v9 -DMSPACES -DUSE_LOCKS -o dlmalloc.so -G -K pic malloc.c -lpthread
$ mv dlmalloc.so 64

3. Making use of dlmalloc in applications.

There are several ways you can make use of the newly compiled dlmalloc on your Solaris system.

• Link it into your applications when you compile them from source.

• Use LD_PRELOAD to pre-link it into an individual application.

• Set LD_PRELOAD into your .profile and force everything to link it in.

3.1. Installing dlmalloc.

The following example shows how I hav eset up dlmalloc on my system. I have chosen to install it
inside of /usr/lib, /usr/lib/sparcv9 and /usr/lib/secure and /usr/lib/secure/64 so that I can run everything
under my login with dlmalloc.so preloaded in. I simply set LD_PRELOAD in my .profile to
LD_PRELOAD=dlmalloc.so and the runtime linker will find it in the normal system search paths for 32
and 64 bit libraries.

install -f /usr/lib 32/dlmalloc.so
32/dlmalloc.so installed as /usr/lib/dlmalloc.so
install -f /usr/lib/secure 32/dlmalloc.so
32/dlmalloc.so installed as /usr/lib/secure/dlmalloc.so
install -f /usr/lib/sparcv9 64/dlmalloc.so
64/dlmalloc.so installed as /usr/lib/sparcv9/dlmalloc.so
install -f /usr/lib/secure/64 64/dlmalloc.so
64/dlmalloc.so installed as /usr/lib/secure/64/dlmalloc.so
#

Once this is done you can set LD_PRELOAD=dlmalloc.so when ever you want to run an application
with the new memory allocator. Or even set it in your profile and have your entire login session use the new
allocator, which is quite handy If you have any problems you can still disable it and use the system malloc
by unsetting LD_PRELOAD in the shell you are running the commands in.

